A Compiler-Based Strategy for Performance Tuning of Applications

Mary Hall

December 7, 2007

* This work has been partially sponsored by DOE SciDAC as part of the Performance Engineering Research Institute (PERI), the National Science Foundation and Intel Corporation.
Local Collaborators

- **Compiler group:**
 - Jacqueline Chame (research scientist)
 - Chun Chen (postdoctoral researcher)
 - Yoon-Ju Lee Nelson, Muhammad Murtaza, Melina Demertzi (Phd students)

- **ISI collaborators:**
 - Ewa Deelman, Yolanda Gil, Kristina Lerman, Robert Lucas

- **Alumnus collaborator:**
 - Jaewook Shin (Argonne)

- **Other USC collaborators:**
 - Rajiv Kalia, Aiichiro Nakano, Priya Vashishta
Prelude:
Things Ken Taught Me

• 1983: Team programming projects reflect the less-than-perfect real world.
• 1984: Algorithms are more fascinating than accounting.
• 1985: Compiler research combines elegant algorithms with building something tangible and important.
• 1986: After three practices and rewrites, a talk is probably ready for IBM.
• 1992: Follow the money.

• Throughout: Always try to minimize compile time.

“Compile time should take as long as you need to get the performance you want.” Keith Cooper, 11/27/07
1. Maximizing “node”* performance is crucial to getting to petascale performance.
 Fewer nodes, faster result, larger problem...

2. “Nodes” are getting increasingly complex.
 Deep memory hierarchies, SIMD engines, Double hummer,
 Multi/many core, Software-managed storage, ...

3. Application scientists have more worthwhile things to do than machine-dependent code rewrites and tedious performance-tuning experiments.
 Focus on science, application capability

4. Petascale resources can and should be harnessed to improve programmer productivity and application performance.
 Useful to tune long-running or frequently executed code.
 Tune in execution context.

*Node in this context may refer to a multi-core device.
Motivation: Multicore Paradigm Shift

1. Maximizing processor performance is crucial to getting to petascale performance.
 Fewer nodes, faster result, larger problem...

2. “Nodes” are getting increasingly complex.
 Deep memory hierarchies, SIMD engines, Double hummer, multithreading, Multi/many core, Software-managed storage, ...

3. Application developers have more worthwhile things to do than machine-dependent code rewrites and tedious performance-tuning experiments.
 Focus on science, application capability

4. Multicore resources can and should be harnessed to improve programmer productivity and application performance.
 Useful to tune long-running or frequently executed code.
 Tune in execution context.

*Node in this context may refer to a multi-core device.
• Overlap of requirements for petascale scientific computing and mainstream multi-core computing.
• Many new and “commodity” application domains are similar to scientific computing.
 - Communication, speech, graphics and games, some cognitive algorithms, biomedical informatics (RMS applications)
• Work with real applications (client?).
 - Molecular dynamics simulation, Computational chemistry, Speech recognition, Biomedical image processing, ...
• Start with development of libraries.
Outline

1. Motivation
2. Challenges & opportunities
3. Approach & potential of compiler-assisted tuning
 - New flexible and systematic compiler technology
 - Scenarios from application tuning
 - Automatic performance tuning
4. Future directions
• Long-term goal is to automate the process of tuning software to maximize its performance.

• Reduces performance portability challenge for computational scientists.

• Addresses the problem that performance experts are in short supply.

• Builds on forty years of human experience and recent success with linear algebra libraries.

Slide source: Bob Lucas and David Bailey
Key Research Themes

• Compiler-based performance tuning tools
 - Use vast resources of petascale systems
 - Enumerate options, generate code, try, measure, record (conceptually)

• Optimizing compilers built from modular, understandable chunks
 - Easier to bring up on new platforms
 - Facilitates collaboration, moving the community forward

A Systematic, Principled Approach!
A New Kind of "Compiler"

Traditional view:

code → Batch Compiler → input data
Performance Tuning “Compiler”

Experiments Engine

Code Translation

transformation script(s)

search script(s)

input data (characteristics)

code
1. Programmer expresses application-level parameters and input data set properties. (ref. Active Harmony and Rose compiler)
Scenario 1: Application-Level Parameters

- Programmer expresses parameters to be searched, input data set (e.g., Visualization of MD Simulation)

- Tools automatically generate code and evaluate tradeoff space of application-level parameters

Parameter cellSize, range = 48:144, step 16

```
ncell = boxLength/cellSize
for i = 1, ncell
    /* perform computation */
```

Const cellSize = 48

```
ncell = boxLength/48
for i = 1, 48
    /* perform computation */
```
2. Application programmer interacts with compiler to guide optimization.
Scenario 2: Programmer-guided Transformations

LS-DYNA Solver Performance Results

• Application programmer has written code variants for every possible unroll factor of two innermost loops

• Straightforward for compiler to generate this code and test for best version

3. **Compiler performs automatic performance tuning.**
Scenario 3 (Simple): Expected Input Data Set Sizes are Known

- Application programmer can express to compiler expected data set size (MADNESS, NEK5K)

- Optimizations tuned for this (e.g., loop unrolling for inner loop)

```
Input size n, range = 2:6, step 2
for i = 1, n
  s

Switch (n)
case 2:
  s1; s2;
case 4:
  s1; s2; s3; s4
case 6:
  s1; s2; s3; s4; s5; s6
default:
  for i = 1, n
    s
```
Model-guided empirical optimization

- **Model-guided optimization**
 - Static models of architecture, profitability
 - Models can get you pretty far [Yotov et al., Qasem & Kennedy]

- **Empirical optimization**
 - Empirical data guide optimization decisions
 - ATLAS, PhiPAC, FFTW, SPIRAL etc.

- Exploit complementary strengths of both approaches
 - Compiler models prune unprofitable solutions
 - Empirical data provide accurate measure of optimization

Goal: Hand-tuned levels of performance from compiler-generated code for loop-based computation that is portable to new architectures.
Automatic Performance Tuning
(Model-Guided Empirical Optimization)

Phase 1:
- Application code
- Code variant generation
- Analysis/models
- Transformation modules
- Set of parameterized code variants + constraints on unbound parameters

Phase 2:
- Search engine
- Performance monitoring support
- Execution environment
- Optimized code + representative input data set
- Optimized code

Architecture specification
Transformation Framework

- Uniform polyhedral representation of transformations [Kelly][Lim&Lam][Cohen et al.]
- Direct mapping from transformation representation to generated code
- Mostly independent of compiler infrastructure

⇒ Straightforward to name alternative code variants and generate code, useful for search

Our contribution:
- Focus on high-level transformations robust for imperfect loop nests, high-quality code generation
foreach memory hierarchy level M
select unmarked data structure D and loop L
s.t. D has maximum reuse, carried by L
if (level == register)
 make L innermost and unroll L
else {
 permute & tile according to reuse dimension
 generate copy variant if profitable
}
determine constraints based on D and M
(mark D code variants
transformations
- original iteration space
 s1 = \{[k,i,j]: 1 <= k < n-1 \land k+1 <= i <= n \land j=k+1\}
s2 = \{[k,i,j]: 1 <= k < n-1 \land k+1 <= i <= n \land k+1 <= i <= n\}
- permute loops k and j
 t1 := \{[k,i,j] -> [0, j, 0, i, 0, k, 0]\}
t2 := \{[k,i,j] -> [0, j, 0, i, 1, k, 0]\}
- tile loops
 t1 := \{[k,i,j] -> [0, jj, 0, kk, 0, j, 0, i, 0, k, 0]:
 jj=2+16β \&\& kk = 1+128α \&\& i-15, 2 <= ii <= i
 \&\& kk-127, 1 <= kk <= k\}
t2 := \{[k,i,j] -> [0, jj, 0, kk, 0, j, 0, i, 1, k, 0]:
 jj=2+16β \&\& kk = 1+128α \&\& i-15, 2 <= ii <= i
 \&\& kk-127, 1 <= kk <= k\}
REAL*8 P1(32,32), P2(32,64), P3(32,32), P4(32,64)
OVER1=0
OVER2=0
DO T2=2,N,64
IF (66<=T2)
DO T4=2,T2-32,32
DO T6=1,T4-1,32
DO T8=T6,MIN(T4-1,T6+31)
DO T10=T4,MIN(T2-2,T4+31)

\[P1(T8-T6+1,T10-T4+1) = A(T10,T8) \]

DO T8=T2,MIN(T2+63,N)
DO T10=T6,MIN(T6+31,T4-1)

\[P2(T10-T6+1,T8-T2+1) = A(T10,T8) \]

DO T8=T4,MIN(T2-2,T4+31)
OVER1=MOD(-1+N,4)
DO T10=MAX(N-OVER1+1,T2),MIN(N,T2+60),4
DO T12=T6,MIN(T4-1,T6+31)
A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
A(T8,T10+1)=A(T8,T10+1)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+1-T2+1)
A(T8,T10+2)=A(T8,T10+2)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+2-T2+1)
A(T8,T10+3)=A(T8,T10+3)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+3-T2+1)
DO T10=MAX(N-OVER1+1,T2),MIN(N,T2+63,N)
DO T12=T6,MIN(T4-1,T6+31)
A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
DO T6=T4+1,MIN(T4+31,T2-2)
DO T8=T2,MIN(N,T2+63)
DO T10=T4,T6-1
A(T6,T8)=A(T6,T8)-A(T6,T10)*A(T10,T8)
Transformed Code for LU
(Cont.)

```
IF (66<=T2)
DO T4=1,T2-33,32
  DO T6=T2-1,N,32
    DO T8=T4,T4+31
      DO T10=T6,MIN(N,T6+31)
        P3(T8-T4+1,T10-T6+1)=A(T10,T8)
      DO T8=T4,T4+31
        P4(T10-T4+1,T8-T2+1)=A(T10,T8)
      DO T8=T2,MIN(T2+63,N)
        OVER2=MOD(-1+N,4)
        DO T10=T2,MIN(N-OVER2,T2+60),4
          DO T12=T4,T4+31
            A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
          A(T8,T10+1)=A(T8,T10+1)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+1-T2+1)
          A(T8,T10+2)=A(T8,T10+2)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+2-T2+1)
          A(T8,T10+3)=A(T8,T10+3)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+3-T2+1)
          DO T10=MAX(T2,N-OVER2+1),MIN(T2+60,N)
            DO T12=T4,T4+31
              A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
                DO T4=T2-1,MIN(N-1,T2+62)
                  DO T8=T4+1,N
                    A(T8,T4)=A(T8,T4)/A(T4,T4)
                  DO T6=T4+1,MIN(T2+63,N)
                    DO T8=T4+1,N
                      A(T8,T6)=A(T8,T6)-A(T8,T4)*A(T4,T6)
```
Pentium M:
Combined Locality + SIMD Compiler

```c
do i
  do j
    do k
      c(i,j) = c(i,j) + a(i,k)*b(k,j)
  end do
end do
end do
```

<table>
<thead>
<tr>
<th>MM Version</th>
<th>Automatically-Generated</th>
<th>Intel MKL</th>
<th>ATLAS</th>
<th>Intel ifort compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3200x3200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>2.957 Gflops</td>
<td>2.895 Gflops</td>
<td>3.076 Gflops</td>
<td>0.692 Gflops</td>
</tr>
<tr>
<td>(Single precision)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implications on Real World

• Where autotuners can beat libraries
 - PERI: Auto-tuning of application code
 - Libraries used in unusual ways (e.g., MM on long, skinny matrices)
 - Composing library calls
• Autotuners can assist in building libraries
• Other ways compilers can make programmers more productive in tuning their code
 - Search for best values of application-level parameters
 - Apply user-directed code transformations
 - Tune for particular problem sizes
Where are we going?

- Multicore and porting to new architectures.
- Systematic approach to application composition and optimization.
 - Knowledge representation to compose applications from optimized components.
 - Efficient but systematic search techniques.
 - Start with distributed systems ➔ move to heterogeneous chip architectures.
- Tools in the hands of users.
Systematic Composition and Optimization of Workflows

Components Optimized in Execution Context

- (Heterogeneous) multi-core will lead us in a similar direction to distributed computing.
- Component technology will become critical.

Limiting Search with Domain Knowledge

Parameters:
- unroll factors
- tile sizes
- prefetch distances

Example
- Formulate memory hierarchy optimization (registers, caches, TLB) as a tree search
- Levels represent ordering of search
- Nodes represent optimization parameters
- Separate trees used for alternative components
- Pruning, backtracking easy

Concluding Remarks

- Three core technical ideas
 - Compiler technology: Modular compilers, systematic approach to optimization, empirical search, hand-tuned performance.
 - User Tools: Access to transformation system, express parameters for automatic search, express expected problem size
 - Systematic: Compose optimized applications in context. Express/derive parameters for search