
The Development of SSA Form

The Development of Static
Single Assignment Form

Kenneth Zadeck
NaturalBridge, Inc.

zadeck@naturalbridge.com

The Development of SSA Form

Ken's Graduate Optimization Seminar

• We learned:
1.what kinds of problems could be addressed by

compiler optimization.
2.how to formulate optimization problems as dataflow

equations.
3.how to solve dataflow equations.

The Development of SSA Form

Ken's Graduate Optimization Seminar

• We learned:
1.what kinds of problems could be addressed by

compiler optimization.
2.how to formulate optimization problems as dataflow

equations.
3.how to solve dataflow equations.

● Because of my dyslexia, I am really bad at 2.

The Development of SSA Form

Ken's Graduate Optimization Seminar

• We learned:
1.what kinds of problems could be addressed by

compiler optimization.
2.how to formulate optimization problems as dataflow

equations.
3.how to solve dataflow equations.

● Because of my dyslexia, I am really bad at 2.
● I was able to reason about dataflow problems

geometrically.

The Development of SSA Form

Variable by Variable Analysis.

• Viewing the program variable by variable
exposes structure that is obscured by the
dataflow model:
– A kill allows the cfg to be clipped.
– The dataflow for a single variable can be solved

without iteration.

The Development of SSA Form

The Dataflow Abstraction

Dataflow analysis is an abstraction:
• Get:

– Use bit vectors for simple problems.
– Use interval analysis to solve equations quickly.

The Development of SSA Form

The Dataflow Abstraction

Dataflow analysis is an abstraction:
• Get:

– Use bit vectors for simple problems.
– Use interval analysis to solve equations quickly.

• Give:
– Cannot play games with kill sets.

The Development of SSA Form

The Dataflow Abstraction

Dataflow analysis is an abstraction:
• Get:

– Use bit vectors for simple problems.
– Use interval analysis to solve equations quickly.

• Give:
– Cannot play games with kill sets.
– Cannot do SSA form.

The Development of SSA Form

Constant Propagation

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

0 1

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

0 1

0 4

The Development of SSA Form

Constant Propagation - Kildall

j = 0

k = 1

if (j > 0)

 then k = 4

k ?

j k

0 T

0 1

0 1

0 4

0 °

The Development of SSA Form

Constant Propagation - Wegbreit

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k ? 5

j k (3À4) (3�5) (4�5)

The Development of SSA Form

Constant Propagation - Wegbreit

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k ? 5

j k (3°4) (3�5) (4�5)

0 °

0 1

0 1 X

The Development of SSA Form

Constant Propagation - Wegbreit

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k ? 5

j k (3ð4) (3�5) (4�5)

0 ð

0 1

0 1 X

0 1

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0

k = 1

if (j > 0)

 then k = 4

k = k

k ?

• Add Reif and Tarjan
birthpoints.

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k = k 5

k ? 6

• Add Reif and Tarjan
birthpoints.

• Add def-use chains.

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k = k 5

k ? 6

j1 k2 k4 k5

0

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k = k 5

k ? 6

j1 k2 k4 k5

0

 1

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k = k 5

k ? 6

j1 k2 k4 k5

0

 1

 4

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k = k 5

k ? 6

j1 k2 k4 k5

0

 1

 4

1

The Development of SSA Form

Constant Propagation – Reif & Lewis

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

k = k 5

k ? 6

j1 k2 k4 k5

0

 1

 4

°

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

• Add more identity
assignments.

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1

k = 1 2

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

• Add more identity
assignments.

• Propagate values
along def-use edges
iff statement is
executable.

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

 1

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3*

 then k = 4 4

 else k = k 5

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

 1

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3*

 then k = 4 4

 else k = k 5*

k = k 6

k ? 7

k1 k2 k4 k5 k6
0

 1

 1

The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0 1*

k = 1 2*

if (j > 0) 3*

 then k = 4 4

 else k = k 5*

k = k 6*

k ? 7

k1 k2 k4 k5 k6
0

 1

 1

 1

The Development of SSA Form

Constant Propagation – Time and Power

• Kildall and Wegbreit use a conventional
dataflow framework.

• The time to run these is between O(NlogNV)
and O(N2 V) depending on the type of control
flow graph processing.

• Reif & Lewis and Wegman & Zadeck are O(N)
for the propagation + NV to compute the
birthpoints.

• Kildall ≈ Reif & Lewis
• Wegbreit ≈ Wegman & Zadeck

The Development of SSA Form

SSA
Looking Forwards at Wegman & Zadeck

• We had no “vision” of SSA form.
• Wegman & Zadeck is yet another fast

technique to perform some transformation that
uses a one off data structure.

The Development of SSA Form

SSA
Looking Backwards at Wegman & Zadeck

• This is the first SSA optimization algorithm.
• The extra identity assignments change the

birthpoints into Φ-functions.
• The algorithm preserves its form while being

transformed.

The Development of SSA Form

Removal of Invariant Code from Loops

• Ron Cytron
• Andy Lowry
• Kenneth Zadeck

POPL13 - 1986

The Development of SSA Form

Removal of Invariant Code from Loops

j = 0

while (...)

j = j + 1

x = y + 3

z = x + 1

... = z + j

• Both of these
statements can be
removed from the
loop.

• The second can be
removed only after
the first one is out.

The Development of SSA Form

Removal of Invariant Code from Loops

j = 0

j = j

while (...)

birthpoint j

j = j + 1

x = y + 3

z = x + 1

... = z + j

j = j

• Add birthpoints and
identity assignments.

The Development of SSA Form

Removal of Invariant Code from Loops

j
1
= 0

j
2
= j

1

while (...)

birthpoint j
2

j
3
= j

2
+ 1

x
1
= y

1
+ 3

z
1
= x

1
+ 1

... = z
1
+ j

3

j
2
= j

3

• Add birthpoints and
identity assignments.

• Rename variables.

The Development of SSA Form

Removal of Invariant Code from Loops

j
1
= 0

j
2
= j

1

x
1
= y

1
+ 3

while (...)

birthpoint j
2

j
3
= j

2
+ 1

z
1
= x

1
+ 1

... = z
1
+ j

3

j
2
= j

3

Any insn can be moved
outside the loop if:
– the birthpoints of the

rhs are outside the
loop.

– the statement is not
control dependent on
a test inside the loop.

The Development of SSA Form

Removal of Invariant Code from Loops

j
1
= 0

j
2
= j

1

x
1
= y

1
+ 3

z
1
= x

1
+ 1

while (...)

birthpoint j
2

j
3
= j

2
+ 1

... = z
1
+ j

3

j
2
= j

3

Any insn can be moved
outside the loop if:
– the birthpoints of the

rhs are outside the
loop.

– the statement is not
control dependent on
a test inside the loop.

The Development of SSA Form

What is in a Name? or The Value of Renaming
for Parallelism and Storage Allocation

• Ron Cytron
• Jeanne Ferrante

ICPP87

Proves that the renaming done in the prev paper
removes all false dependencies for scalars.

The Development of SSA Form

The Origin of Ф-Functions and the Name

• Barry Rosen did not like the identity
assignments.
– He decided to replace them with “phony functions”

that were able to see which control flow reached
them.

– A Ф-function was a more publishable name.

• The name Static Single Assignment Form
came from the fact that Single Assignment
languages were popular then.

The Development of SSA Form

Global Value Numbers and Redundant
Computations

• Barry Rosen
• Mark Wegman
• Kenneth Zadeck

POPL15 - 1988

The Development of SSA Form

Global Value Numbers and Redundant
Computations

• Classical value numbering algorithms are
restricted to programs with no joins.

• With Φ-functions, it is possible to extend value
numbering to acyclic regions.

The Development of SSA Form

Global Value Numbers and Redundant
Computations

 x
3
=Φ(x

1
,x

2
)

 ...=x
3
+y

1

The Development of SSA Form

Global Value Numbers and Redundant
Computations

 ...=x
1
+y

1
 ...=x

2
+y

1

 x
3
=Φ(x

1
,x

2
)

 ...=x
3
+y

1

The Development of SSA Form

Detecting Equality of Values in Programs

• Bowen Alpern
• Mark Wegman
• Kenneth Zadeck

POPL15 - 1988

The Development of SSA Form

Detecting Equality of Values in Programs

• Convert the program to SSA form.

The Development of SSA Form

Detecting Equality of Values in Programs

• Convert the program to SSA form.
• Use Hopcrofts finite state minimization

algorithm to partition the program.
– The dataflow edges are the edges in the graph.

– Label each Φ-function at join point n to Φ
n
.

– The operators are labels on the nodes. Place all
the operations with a given label in the same
partition to start.

The Development of SSA Form

Detecting Equality of Values in Programs

• Convert the program to SSA form.
• Use Hopcrofts finite state minimization

algorithm to partition the program.
– The dataflow edges are the edges in the graph.

– Label each Φ-function at join point n to Φ
n
.

– The operators are labels on the nodes. Place all
the operations with a given label in the same
partition to start.

• After partitioning, any operations in the same
partition compute the same value.

The Development of SSA Form

Detecting Equality of Values in Programs

• All of us thought this was a very neat trick.
• It is not useful because many people add other

tricks to their value numbering.
• We tried for two years to extend this along the

lines of those tricks and we failed.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• Ron Cytron
• Jeanne Ferrante
• Barry Rosen
• Mark Wegman
• Kenneth Zadeck

POPL16 - 1989

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• There should have been two papers in that
POPL:
– An Efficient Method of Computing Static Single

Assignment Form by Rosen, Wegman and Zadeck
– An Efficient Method of Computing the Program

Dependence Graph by Cytron and Ferrante.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• There should have been two papers in that
POPL:
– An Efficient Method of Computing Static Single

Assignment Form by Wegman and Zadeck
– An Efficient Method of Computing the Program

Dependence Graph by Cytron and Ferrante.

• We figured out that the algorithms were the
same a couple of days before the submission
deadline.
– We barely had time to merge the abstracts.
– We missed fixing the title.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• The algorithm presented here is generally
linear.
– It is a big improvement over Reif & Tarjan which is

generally quadratic.

• It has been bettered by:
– Sreedhar &Gao in POPL22.
– Bilardi & Pingali in JACM 2003.

The Development of SSA Form

An Efficient Method of Computing
Static Single Assignment Form

• The algorithm presented here is generally
linear.
– It is a big improvement over Reif & Tarjan which is

generally quadratic.

• It has been bettered by:
– Sreedhar &Gao in POPL22.
– Bilardi & Pingali in JACM 2003.

• The journal version has a dead code
elimination algorithm.

The Development of SSA Form

Analysis of Pointers and Structures

• David Chase
• Mark Wegman
• Kenneth Zadeck

Sigplan 90

The Development of SSA Form

Analysis of Pointers and Structures

• One of the first computationally efficient
techniques to analyze pointers.

• Makes on minimal use of SSA.
– Use of the ssa names gives a small amount of flow

sensitivity to a problem that otherwise must be
solved in a flow insensitive way.

– This trick is used in other new algorithms.

• Many new and much better techniques have
followed.

The Development of SSA Form

What Happened Next

• We stopped working on SSA.
– None of us actually worked on a compiler project.
– I was at Brown University.
– We were blocked from transfering SSA to the IBM

product compilers.

• People outside of IBM were picking it up.
– Apollo, DEC, HP, SGI, and SUN were all using it to

some extent.
– We had built a good foundation.
– It was easy to play the game.

The Development of SSA Form

Why Did SSA Win?

• All things being equal, SSA form only accounts
for a few percent code quality over the
comparable data flow techniques.
– SSA techniques run much faster.
– Scanning the program, building the transfer

functions, and solving the equations is slow.
– Incremental data flow never really worked.

• The high gain, parallel extraction techniques
need SSA to keep things clean.

• SSA is easier to understand than dataflow.
– I have no standing to say this.

The Development of SSA Form

References

There is a good bibliography online that contains
most of the SSA papers:
– http://www.cs.man.ac.uk/~jsinger/ssa.html
– It is accessable from the wikipedia article on SSA.

http://www.cs.man.ac.uk/~jsinger/ssa.html

The Development of SSA Form

Postscript

• For the last year I have been working to bring
the analysis in the GCC back ends up to date.
– It is infeasible to use SSA for the back ends.
– Must maintain compatibility with the existing

machine descriptions.
– The back end is currently state of the art as of

about 1986.

• The middle machine independent parts are
now all SSA.

The Development of SSA Form

Postscript

• For the last year I have been working to bring
the analysis in the GCC back ends up to date.
– It is infeasible to use SSA for the back ends.
– Must maintain compatibility with the existing

machine descriptions.
– The back end is currently state of the art as of

about 1986.

• The middle machine independent parts are
now all SSA.

• I still do not speak dataflow equations.

