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Ken's Graduate Optimization Seminar

• We learned:
1.what kinds of problems could be addressed by 

compiler optimization.
2.how to formulate optimization problems as dataflow 

equations.
3.how to solve dataflow equations.

● Because of my dyslexia, I am really bad at 2.
● I was able to reason about dataflow problems 

geometrically.
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Variable by Variable Analysis.

• Viewing the program variable by variable 
exposes structure that is obscured by the 
dataflow model:
– A kill allows the cfg to be clipped.
– The dataflow for a single variable can be solved 

without iteration.
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The Dataflow Abstraction

Dataflow analysis is an abstraction:
• Get:

– Use bit vectors for simple problems.
– Use interval analysis to solve equations quickly.

• Give:
– Cannot play games with kill sets.
– Cannot do SSA form.
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Constant Propagation - Wegbreit
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Constant Propagation – Wegman & Zadeck
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if (j > 0)        3
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• Add more identity 
assignments.

• Propagate values 
along def-use edges 
iff statement is 
executable.



The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0             1*

k = 1             2

if (j > 0)        3

    then k = 4    4

 else k = k    5

k = k             6

k ?               7

 

k1  k2  k4  k5  k6
0



The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0             1*

k = 1             2*

if (j > 0)        3

    then k = 4    4

 else k = k    5

k = k             6

k ?               7

 

k1  k2  k4  k5  k6
0

 1



The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0             1*

k = 1             2*

if (j > 0)        3*

    then k = 4    4

 else k = k    5

k = k             6

k ?               7

 

k1  k2  k4  k5  k6
0

 1



The Development of SSA Form

Constant Propagation – Wegman & Zadeck

j = 0             1*

k = 1             2*

if (j > 0)        3*

    then k = 4    4

 else k = k    5*

k = k             6

k ?               7

 

k1  k2  k4  k5  k6
0

 1

           1



The Development of SSA Form

Constant Propagation – Wegman & Zadeck
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Constant Propagation – Time and Power

• Kildall and Wegbreit use a conventional 
dataflow framework.

• The time to run these is between O(NlogNV) 
and O(N2 V) depending on the type of control 
flow graph processing.

• Reif & Lewis and Wegman & Zadeck are O(N) 
for the propagation + NV to compute the 
birthpoints.

• Kildall ≈ Reif & Lewis
• Wegbreit ≈ Wegman & Zadeck
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SSA
Looking Forwards at Wegman & Zadeck

• We had no “vision” of SSA form.
• Wegman & Zadeck is yet another fast 

technique to perform some transformation that 
uses a one off data structure.
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SSA  
Looking Backwards at Wegman & Zadeck

• This is the first SSA optimization algorithm.
• The extra identity assignments change the 

birthpoints into Φ-functions.
• The algorithm preserves its form while being 

transformed. 
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• Ron Cytron
• Andy Lowry
• Kenneth Zadeck

POPL13 - 1986
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Removal of Invariant Code from Loops

j = 0

while (...)

j = j + 1

x = y + 3

z = x + 1

... = z + j  

• Both of these 
statements can be 
removed from the 
loop.

• The second can be 
removed only after 
the first one is out.
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identity assignments.
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What is in a Name? or The Value of Renaming 
for Parallelism and Storage Allocation

• Ron Cytron
• Jeanne Ferrante

ICPP87 

Proves that the renaming done in the prev paper 
removes all false dependencies for scalars.
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The Origin of Ф-Functions and the Name 

• Barry Rosen did not like the identity 
assignments.
– He decided to replace them with “phony functions” 

that were able to see which control flow reached 
them.

– A Ф-function was a more publishable name.

• The name Static Single Assignment Form 
came from the fact that Single Assignment 
languages were popular then.
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• Barry Rosen
• Mark Wegman
• Kenneth Zadeck

POPL15 - 1988
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Global Value Numbers and Redundant 
Computations

• Classical value numbering algorithms are 
restricted to programs with no joins.

• With Φ-functions, it is possible to extend value 
numbering to acyclic regions.



The Development of SSA Form

Global Value Numbers and Redundant 
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Detecting Equality of Values in Programs

• Bowen Alpern
• Mark Wegman
• Kenneth Zadeck

POPL15 - 1988
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algorithm to partition the program.
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n
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– The operators are labels on the nodes.  Place all 
the operations with a given label in the same 
partition to start.
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Detecting Equality of Values in Programs

• Convert the program to SSA form.
• Use Hopcrofts finite state minimization 

algorithm to partition the program.
– The dataflow edges are the edges in the graph.

– Label each Φ-function at join point n to Φ
n
.

– The operators are labels on the nodes.  Place all 
the operations with a given label in the same 
partition to start.

• After partitioning, any operations in the same 
partition compute the same value.
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Detecting Equality of Values in Programs

• All of us thought this was a very neat trick.
• It is not useful because many people add other 

tricks to their value numbering.
• We tried for two years to extend this along the 

lines of those tricks and we failed.
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An Efficient Method of Computing             
Static Single Assignment Form

• Ron Cytron
• Jeanne Ferrante
• Barry Rosen
• Mark Wegman
• Kenneth Zadeck

POPL16 - 1989
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An Efficient Method of Computing             
Static Single Assignment Form

• There should have been two papers in that 
POPL:
– An Efficient Method of Computing Static Single 

Assignment Form by Rosen, Wegman and Zadeck
– An Efficient Method of Computing the Program 

Dependence Graph by Cytron and Ferrante.
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An Efficient Method of Computing             
Static Single Assignment Form

• There should have been two papers in that 
POPL:
– An Efficient Method of Computing Static Single 

Assignment Form by Wegman and Zadeck
– An Efficient Method of Computing the Program 

Dependence Graph by Cytron and Ferrante.

• We figured out that the algorithms were the 
same a couple of days before the submission 
deadline.
– We barely had time to merge the abstracts.
– We missed fixing the title.
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An Efficient Method of Computing             
Static Single Assignment Form

• The algorithm presented here is generally 
linear.  
– It is a big improvement over Reif & Tarjan which is 

generally quadratic.

• It has been bettered by:
– Sreedhar &Gao in POPL22.
– Bilardi & Pingali in JACM 2003.
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An Efficient Method of Computing             
Static Single Assignment Form

• The algorithm presented here is generally 
linear.  
– It is a big improvement over Reif & Tarjan which is 

generally quadratic.

• It has been bettered by:
– Sreedhar &Gao in POPL22.
– Bilardi & Pingali in JACM 2003.

• The journal version has a dead code 
elimination algorithm.
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Analysis of Pointers and Structures

• David Chase
• Mark Wegman
• Kenneth Zadeck

Sigplan 90
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Analysis of Pointers and Structures

• One of the first computationally efficient 
techniques to analyze pointers.

• Makes on minimal use of SSA.
– Use of the ssa names gives a small amount of flow 

sensitivity to a problem that otherwise must be 
solved in a flow insensitive way.

– This trick is used in other new algorithms.

• Many new and much better techniques have 
followed. 
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What Happened Next

• We stopped working on SSA.
– None of us actually worked on a compiler project.
– I was at Brown University.
– We were blocked from transfering SSA to the IBM 

product compilers.

• People outside of IBM were picking it up.
– Apollo, DEC, HP, SGI, and SUN were all using it to 

some extent.
– We had built a good foundation.
– It was easy to play the game.
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Why Did SSA Win?

• All things being equal, SSA form only accounts 
for a few percent code quality over the 
comparable data flow techniques.
– SSA techniques run much faster.
– Scanning the program, building the transfer 

functions, and solving the equations is slow.
– Incremental data flow never really worked.

• The high gain, parallel extraction techniques 
need SSA to keep things clean.

• SSA is easier to understand than dataflow.
– I have no standing to say this.
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References

There is a good bibliography online that contains 
most of the SSA papers:
– http://www.cs.man.ac.uk/~jsinger/ssa.html
– It is accessable from the wikipedia article on SSA.

http://www.cs.man.ac.uk/~jsinger/ssa.html
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Postscript

• For the last year I have been working to bring 
the analysis in the GCC back ends up to date.
– It is infeasible to use SSA for the back ends. 
– Must maintain compatibility with the existing 

machine descriptions.
– The back end is currently state of the art as of 

about 1986.

• The middle machine independent parts are 
now all SSA. 
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Postscript

• For the last year I have been working to bring 
the analysis in the GCC back ends up to date.
– It is infeasible to use SSA for the back ends. 
– Must maintain compatibility with the existing 

machine descriptions.
– The back end is currently state of the art as of 

about 1986.

• The middle machine independent parts are 
now all SSA. 

• I still do not speak dataflow equations.


