Experiences with Seismic Algorithms on GPUs

Scott Morton
Geoscience Technology
Hess Corporation
Hess Commodity PC Cluster
2005
Hess Commodity PC Cluster
2005

John Hess: “What's next?”
Outline

• History
 – Other co-processors
 – Peakstream & ATI/AMD
 – Nvidia

• Pre-stack depth migration algorithms
 – Kirchhoff
 – Reverse-time
 – Wave-equation

• Status
Co-Processors

• Find co-processors "better" than PC CPUs
 – Better price-to-performance ratio
 • Want 10X improvement
 • Commodity volumes
 • Significant parallelism
 – Streaming
 – Multi-threaded
 • Must be "easy" to program
 – Similar programming tools
 – Able to handle similar computational algorithms
Co-Processors

• Effort expended varies from
 – Monitoring capabilities
 – Testing kernels
 – Buying hardware
• Candidates we've considered
 – DSPs
 – FPGAs
 – Cell processors
 – GPUs
FPGAs

• SRC Computers, Inc
 – Co-processing board
 – Limited on-board memory
 • ~10 X speed-up
 • ~10 X cost increase
 • Difficult to program
 – Libraries & compilers but …
 – Ended up using graphic scheduling of algorithm
Why GPUs?
Nvidia’s G80 Architecture

- Nvidia Corporation, CUDA Compute Unified Device Architecture (version 1.0), Jun. 2007, pg 2
Computational Performance

- Peak GFLOPS
- NVIDIA GPU
- Intel CPU
Bandwidth Performance

![Graph showing CPU and GPU bandwidth performance over years from 2003 to 2007.](image-url)
Accessing the GPU's Power

• Graphics people speak a different language
• APIs and languages
 – OpenGL API
 – Sh library
 – Nvidia's Cg
 – Stanford's Brook (for GPUs)
Peakstream

- Software platform
 - Write in standard C++
 - Virtual machine & JIT compiler
 - Creates stream kernels
 - Run kernels on GPU or CPU or …
 - Partnered early with ATI (AMD)
Peakstream

• Tested several algorithms
 – Kirchhoff prototype
 – Finite-difference modeling
 • 2-D demo at SEG 2006

• Performance
 – 5 – 10 X speed-up in 2-D
 – Only 2 - 3 X in 3-D

• Promising but …
• Tested several algorithms
 – Kirchhoff prototype
 – Finite-difference modeling
 • 2-D demo at SEG 2006
• Performance
 – 5 – 10 X speed-up in 2-D
 – Only 2 - 3 X in 3-D
• Promising but …
Nvidia's CUDA

• C with parallel language extensions
 – SIMD programming language
 – Specify grids of blocks of threads
 – Complex memory model

• Programming involves
 – Copying data between CPU and GPU
 – multi-threaded kernels for GPU
CUDA Programming Model

- Nvidia Corporation, CUDA Compute Unified Device Architecture (version 1.0), Jun. 2007, pg 9
CUDA Memory Model

- Fast
 - Limited in size (16kB)
 - Has access requirements

- Relatively slow
 - Large in size (1.5GB)
 - Has access requirements

- Small but cached
 - Can not be changed during runtime

- 2-D cached
 - Can not be changed during runtime

- Nvidia Corporation, CUDA Compute Unified Device Architecture (version 1.0), Jun. 2007, pg 11
Nvidia's CUDA

• Relatively easy programming
 – Took 1.5 days to learn CUDA and write 2-D modeling program
 – But steeper learning curve for optimization
Prestack Depth Migration

• Algorithmic Efforts
 – Test with simplified kernels
 – If promising, port production code

• Candidates
 – Kirchhoff
 – Reverse-time
 – Wave-equation
Prestack Depth Migration

• Algorithmic Efforts
 – Test with simplified kernels
 – If promising, port production code

• Candidates
 – Kirchhoff
 – Reverse-time
 – Wave-equation

• Disclaimer: your/our mileage will vary
Kirchhoff Kernel

\[t = T_S + T_R \]

Image trace

Source

Receiver

Add to Image

Image point

Data trace
Kirchhoff Learning Curve
Kirchhoff Learning Curve

0 – Initial Kernel
1 – Used Texture Memory
2 – Shared Memory Image Cell
3 – Global Memory Coalescing
4 – Decreased Data Trace Shared Memory Use
5 – Optimized Use of Shared Memory
6 – Consolidated “if” Statements, Eliminated or Substituted Some Math Operations
7 – Removed an “if” and “for”
8 – Used Texture Memory for Data-Trace Fetch
Kirchhoff Learning Curve

0 – Initial Kernel
1 – Used Texture Memory
2 – Shared Memory Image Cell
3 – Global Memory Coalescing
4 – Decreased Data Trace Shared Memory Use
5 – Optimized Use of Shared Memory
6 – Consolidated “if” Statements, Eliminated or Substituted Some Math Operations
7 – Removed an “if” and “for”
8 – Used Texture Memory for Data-Trace Fetch

Theoretical Max of ~ 70 Billion Migration-Contributions per Second
Reverse-time & Modeling

• Pseudo-spectral
 – Dominated by 3D FFT
 – 5 X speed-up over a single CPU
 – 20% speed-up over dual quad-core node

• Finite difference
 – 2^{nd} order time, 8^{th} order space
Wave-equation Migration

• Implicit finite difference (ADI)
 – Dominated by complex tri-diagonal systems
 – Wrote prototype CUDA code
 • Benchmarked on 1 GPU
 • Compared against production kernel
 – Currently debugging full production code
ADI Wave-equation Performance

GPU speed-up

<table>
<thead>
<tr>
<th>processor(s)</th>
<th>GPU speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA prototype (1 GPU)</td>
<td>0</td>
</tr>
<tr>
<td>1 Xeon (3.6 GHz)</td>
<td>60</td>
</tr>
<tr>
<td>2 Xeon (3.6 GHz)</td>
<td>30</td>
</tr>
<tr>
<td>1 CPU (dual quad-core)</td>
<td>10</td>
</tr>
<tr>
<td>2 CPUs (dual quad-core)</td>
<td>5</td>
</tr>
<tr>
<td>4 CPUs (dual quad-core)</td>
<td>3</td>
</tr>
<tr>
<td>6 CPUs (dual quad-core)</td>
<td>2</td>
</tr>
</tbody>
</table>
Status of Hess GPU Systems

• Got test system in spring ‘07
 – Used for prototyping Kirchhoff code
 – Benchmarked simple kernels
Status of Hess GPU Systems

• Ordered 32-node system in Jan ’08
 – Each node contains
 • Dual quad-core 1U server with 8 GB memory
 • Connected to 1U 4-GPU server with 1.5 GB each
 – Running test codes by Fri Feb 29th
Status of Hess GPU Systems

• Ordered 32-node system in Jan ’08
 – Each node contains
 • Dual quad-core 1U server with 8 GB memory
 • Connected to 1U 4-GPU server with 1.5 GB each
 – Running test codes by Fri Feb 29th
 – Running production code by …?
 – Out-performing 4000-CPU cluster by …?
 • $128 \times 29 \times 2 = 7424$
Acknowledgements

- Hess management for their support and permission to publish.
- Thomas Cullison, Jeff Davis, Mac McCalla @ Hess
- David Caliga @ SRC Computers
- Matthew Papakipos & Philip Nenon @ Peakstream
- Paulius Micikevicius, Paul Holzhauer & Philip Nenon @ Nvidia